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Some Aspects of Using a Scanning Electron Microscope
for Total Dose Testing

K. F. Galloway and P. Roitman*
Electronic Technology Division
Institute for Applied Technology
National Bureau of Standards
Washington, D.C. 20234

Abstract

This report addresses a number of aspects Involved in
using a Scanning Electron Microscope (SEM) for radiation test—
ing of semiconductor devices. Problems associated with using
the low energy electron beam to simulate 60Co exposure and a
method for estimating the total absorbed dose in critical de-
vice oxides are discussed. The method is based on the experi-
mentally determined expression for electron energy dissipation
versus penetration depth in solid m.terials of Everhart and
Hoff. An appendix giving the method of estimating the total
absorbed dose in a form suitable for ASTM deliberations is
included.

1. Introduction

Low energy electron beams such as those used in a scanning electron
microscope (SEM) have been used in a number of experiments to explore
the effects of ionizing radiation on semiconductor devices.~~

1’ The SEN
has been suggested as an instrument which can be used to selectively ir-
radiate devices directly at the wafer level and which can simulate the
effects of 60Co gamma irradiation.12 15 This report addresses a number
of aspects involved in using an SEM for radiation testing of semiconduc-
tor devices. In particular, problems associated with using the low en-
ergy electron beam to simulate 60Co exposure and a method for estimating
the total absorbed doset in critical device oxides are discussed.

If the SEM irradiation is intended to simulate a 60Co radiation ex-
posure, at least three factors must be considered. 1) For a low energy
electron beam, the depth—dose distribution through the oxide nay be
quite different from the assumed constant depth—dose distribution for
60Co exposure. 2) An SEN properly adjusted for imaging using secondary
electrons will not deliver a uniform electron flux to the specimen.

*NBS NRC Postdoctoral Research Associate.

this report, the terms total dose and total absorbed dose are used
to indicate the total energy divided by total mass. This is to be dis-
tinguished from the term absorbed dose which is generally defined as a
point quantity.
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3) The dose rate during a typical SEN exposure is considerably higher
than typical 60Co dose rates.

Due to the variation in depth—dose profiles of low energy electrons
in device structures, careful attention must be given to the method used
for determining the total absorbed dose. The energy deposited by the
electron beam can be considered primarily as a mechanism for electron—
hole pair production in the device materials. Since an electron of ap-
proximately 170 key or greater is necessary for displacement damage in
silicon, permanent bulk damage can be neglected for SEN electron irradia-
tion. In metals and semiconductor materials, the pair formation will
only result in a transient effect. However, the trapping of holes in
the silicon dioxide and interface state build—up at the silicon—silicon
dioxide interface can result from low energy electron exposure. These
are also the effects usually associated with 60 Co exposure’6 where the
total absorbed dose in the oxide is the radiation parameter which corre-
lates with changes in device electrical parameters. For this reason,
the method given in this report will be for estimating the total ab-
sorbed dose in the oxide. The method is based on the experimentally de-
termined expression for electron energy dissipation versus penetration
depth in materials with atomic numbers between 10 and 15 given by Ever—
hart and Hoff.17

In the following sections, the calculational method for estimating
the total absorbed dose and various graphs to facilitate the calculation
are given, an example calculation is presented, and techniques and prob—
lems relevant to using an SEM for radiation testing are discussed . An
appendix giving the method of estimating the total absorbed dose in semi-
conductor devices due to SEM electron radiation in a form suitable for
ASTN deliberations is included.

2. Calculation of Total Absorbed Dose

Early work on the distribution of energy loss versus penetration
depth for kilovolt electrons was done by GrUn.18 GrUn experimentally
determined the electron energy absorption as a function of penetration
depth in air and demonstrated two important points. First, he obtained
a relationship between the projected range of electrons, RG, and the
electron beam energy, EB:

— 4.57 E~~~75 , (1)

where RC is expressed in micrograms per square centimeters and EB is ex-
pressed in kilo—electron volts. This expression is valid for 5 key <

< 25 key. Second, he showed that the shape of the depth—dose relation

~The unit of length used here is mass thickness — the product of materi-
al density and thickness. For example, a layered structure of 800 nm
of aluminum and 200 nm of silicon dioxide would have a thickness of 260
ug/cm2

. 2



is practically invariant if the penetration distance is expressed as a
function of HG and the energy is expressed as a fraction of EB.

Everhart and Hoff 17 extended these general conclusions to solids
and obtained a generalized depth—dose curve for solid materials . They
determined experimentally a depth—dose function by taking the steady—
state electron—beam—induced current through the insulating layer of a
metal—oxide—semiconductor structure as a measure of the energy dissipa-
tion in that layer. For structures of aluminum , silicon dioxide, and
silicon, Everhart and Hoff found the projected range expression ,

Rc — 3.98 EB
1 7 5  

, (2)

to be accurate for 5 key < E~ < 25 keV. Figure 1 is a plot of projected
range versus electron beam energy . They also found that for elements
with an atomic number in the range 10 to 15 the energy dissipation per
unit mass thickness is given by

dE (
~~

fB
)E
B~~

y)

where fg is the fraction of incident energy backscattered, typically
taken as 0.1 (see Appendix A), y — x/R~ where x is the penetration depthin micrograms per square centimeter, and

X(y) = 0.60 + 6.2ly — l2.40y2 + 5.69y3 . (4)

Equation 3 is plotted in figure 2 for several beam energies.

The work of Everhart and Hoff provides the basis for calculating
the total absorbed dose in the oxide layers of semiconductor devices ex-
posed in a scanning electron microscope.

If uniform electron flux over the rastered area (As in square cen-
timeters) is assumed , the number of incident electrons per unit area
(electrons per square centimeter) is

I t
(5)

where ‘B is the electron beam current in amperes, t is the exposure time
in seconds, and q is the charge per electron (1.6 x 10—19 coulombs per
electron). Multiplying N by the area of the oxide layer of interest (A0
in square centimeters) gives the number of electrons incident on the ox-
ide.

The energy deposited in the oxide per electron can be calculated
from eq (3) by integrating from x1, the distance from the device surface3
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to the top of the oxide , to x2, the distance to the bottom of the oxide .
Normal incidence for the electron beam is assumed.

rx2
I dEE — I  — dxD j dx
xl

= (l_ f
B)E

BJ 
A ( y ) d y (6)

= ~~.—f
5

) E~ [Y(y2) — Y(yj)]

= (l_f
B

)E
B ~D

where 
~D 

is the fraction of incident electron energy deposited between
Yi and Y2 and

Y(y) = O.6y + 3.l05y2 — 4.l33y 3 
+ l.425y~ . (7)

Figure 3 is a plot of the function Y.

The total energy deposited in the oxide in kilo—electron volts is
then

ET 
— N•A

~~
ED 

. (8)

The radiation dose in the oxide can be calculated by dividing ET by the
mass of the oxide layer in grams

M A  (x2 — x1) . (9)

The result, in kilo—electron volts per microgram , is

Dose — N
~
ED~

(x2 — xiY’ - (10)

The commonly used unit of radiation dose, the rad, is defined as the
amount of radiation which deposits 100 ergs of energy per gram of irra-
diated material; the total absorbed dose in the oxide layer in rad(S102)
is

Dose [rad(Si0 2)} — 1.602 x l0~~ N-E~~(x2 
— x 1) 1 

- (11)

The parameters used in determining N and ED can be substituted explicit—
ly in eq (11) and the total absorbed dose in the oxide layer can be ex-
pressed as

l01~ IBEBt”fB
)f

Dose [rad(Si02)] =

6 

A (x2 
— x1) 

D 
- (12)

— —--——- . .---- ~~~- - —- -— .-- - -- - . ~~~~~~~~~~~
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The quantities appearing in eq (12) and their units are given in table I.

Table I. SYMBOLS AND UNITS

Symbol Parameter Units

‘B beam current A

EB energy of beam electrons keV

t scan tine 5

A area of scan cm2

x2—x 1 oxide thickness iig/cm 2

fraction of incident energy unitless
backscattered from device

fraction of incident energy unitless
deposited in oxide

3. Example Calculation

Consider a critical oxide layer of 100 nm, for example the gate ox-
ide of an MOS device , beneath 1 -nn of aluminum which is in turn beneath
a silicon oxide overcoat 1 ~nn thick. Figure 4 is a nomograph which can
be used to convert aluminum, silicon dioxide, or aluminum plus silicon
dioxide thickness in micrometers to mass thickness in micrograms per
square centimeter. On a depth scale measured from the top of the over-
coat , the critical oxide extends from 500 h g/cm2 to 523 h g/cm2 (xl and
x2, respectively). For a 20—keV electron beam, R~ 

is 752.8 pg/cm2 (see
fig. 1). Thus

xl
— = 0.664

a
(13)

x2
Y2 = r- = 0.695

a
and from eq (7)

Y(y1) 0.834
(14)

Y(y2) 0.861 -

Thus , the energy deposited in the oxide expressed in kilo—electron volts
per electron is

E = (1.0—0.1) 20 [0.861—0.834 ]D (15)
= 0.486

8
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For an electron beam of 100 pA scanning an area of 0.02 cm2 for 100 s,
the number of incident electrons per square centimeter is

N - (100 x 10—12) (100)
— 
(1.6 x 10—19) (.02)

(16)
= 3.125 x 1012

The total absorbed dose in the oxide for this case is then

Dose [rad(Si02)] = 
(1.602 x l0)~~ (3.125 x 1012) (0.486)

( 17)
= 1.06 x 106

4. Consideration of SEM Parameters

If the procedure for estimating the total absorbed dose outlined in
the preceding sections is to yield reasonable results, the SEN should be
adjusted so that the assumptions made in the calculation are met and the
SEM parameters used in the calculation should be accurately determined .
The requirement of a uniform electron flux incident on the specimen
needs special attention.

The area of the specimen exposed to the electron beam or the area
scanned, A5, is usually related to the area of the recording CRT, ACRT,
and the SEN magnification by

A
A5— ~~~~~~~~~ . (18)

For this reason, the magnification needs to be accurately determined .
The magnification is a function of many different variables and is usu-
ally determined using a calibration artifact. The electron beam current ,
‘B ’ is usually measured using a Faraday cup . The beam energy , EB, is
probably best determined from the x—rays emitted from a known target.
Techniques for determining these and other critical parameters are dis-
cussed in a paper by Joy.’9

In order that the assumption of uniform electron exposure be met ,
a number of factors must be carefully considered. The goal, of course,
is a uniform dose deposited in the oxide layer. An SEN electron beam
properly adjusted for secondary imaging is approximately circular in
projection on the specimen with about 80 percent of the electrons in a
circle 10 to 25 nm in diameter. As these electrons penetrate to the ox-
ide layer of interest a radially varying dose distribution in the oxide
results , primarily from multiple scattering of the electrons. Figure 5,
taken from the work of Chadsey ,20 illustrates the radial dose distribu-
tion in the oxide for a point beam of 20—key electrons incident on a
150—nm silicon dioxide layer on silicon beneath a 500—nm aluminum layer.
Extrapolating from the data in this figure , it is obvious that when us—

10 
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ing a well focused beam the scan lines must be on the order of 0.5 jim or
less apart to achieve a uniform dose when irradiating typical chips.
This is impractical since a typical chip to be exposed is on the order
of 2500 pm on a side and the number of scan lines per frame is usually
between 500 and 2000. Therefore , an SEN operated in its normal imaging
mode will not deliver a uniform dose to typical device oxides.

This problem can be solved by defocusing the electron bean In order
to obtain a uniform electron exposure. This is accomplished by decreas-
ing the objective lens current. Beam diameters as large as 50 to 100 pm
are easily attainable . Figure 6 illustrates beam “profiles” obtained by
defocusing. The beam “profiles” shown in figure 6 were measured using
an MOS induced current technique schematically shown in figure 7. An
MOS capacitor with a gate 5 pm wide and several hundred micrometers long
was oriented perpendicular to the scan direction and biased to accumula-
tion . The current induced by the beam in the oxide was amplified and re-
corded on an x—y plotter . Figure 6a shows the profile of the gate at
focus (beam diameter much less than gate width) and can be used to esti-
mate the beam widths of the other traces. Figures 6b and 6c show the
profiles obtained as the beam is progressively defocused. The amplitude
is arbitrary as the beam current changes with objective lens setting .
The beam current used to calculate the dose must be measured with the
beam defocused. The profiles obtained In this way are not true beam in-
tensity profiles as the gate integrates the electron distribution in one
dimension. However, the full width of the measured profile , from where
the current rises from zero to where it returns to zero, is exactly the
full width of the beam plus the width of the gate stripe. Figure 8 rep-
resents the uniformity of exposure across a chip for electron beams with
assumed Gaussian distributions of 0.025, 5.0, and >10.0 jim FWHN . If ,
for example , a 50—jim diameter beam is scanned across a chip on lines 5
jim apart , the resulting dose will be uniform.

Another factor to be considered is the time of exposure. If the
time per frame is 

~F 
and the time of exposure is t , the assumption of

uniform exposure of the specimen is most nearly met if t is a rational
multiple of tF or if t is very much greater than t~ .

5. SEM Radiation Testing

This final section is devoted to a discussion of a number of other
important details which must be considered when using an SEM for the
radiation testing of semiconductor devices. Practical problems associ-
ated with device positioning , device biasing, and possible damage to ad-
jacent devices are briefly addressed. Also, the effects of differences
in depth—dose distribution and in dose rate between the low energy elec-
trons from SEN exposure and the gamma—rays from 60Co radiation testing
are pointed out .

Positioning the device to be exposed En the SEN chamber may pre-
sent a problem . This is particularly true If It is desired to expose
only one or a few devices on a wafer. Some systems have optical view—
ing systems which are useful in positioning. It is also possible to

12 
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Figure 6. Beam “profiles” obtained by defocusing measured with a 5—jim
aluminum stripe MOS capacitor. A. Focused beam ; the width
of the peak is approximately equal to the width of the 5—jim
stripe. B. Beam width “.4 jim. C. Beam width “.18 jim.
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design and construct a fixture which will hold a wafer and provide
shielding for those devices which are not to be exposed to the beam.
In general , a very low energy electron beam (EB < 1 keV) can be used to
locate and align the device to be exposed . Electrons of this energy
usually do not penetrate to critical oxide layers. However , a small
but potentially significant number of continuum x—rays , generated by
the electrons in the material covering the critical oxide layers, may
penetrate to the oxide. If this technique is to be used , the exposure
during set—up should be as short as possible. For a particular SEM sys-
tem , it may be necessary to explore a number of techniques to discover
the best method .

It is generally accepted that ionizing radiation effects are accen-
tuated by applying bias to the device during the radiation exposure.
Provisions for applying biases during SEN exposure to a single device
mounted on a header are available in most instruments. However , SEM
systems equipped with multiple probes for IC probing are not currently
commercially available. A group interested In doing on—wafer failure
analysis has designed a fixture which was mounted in an SEN chamber so
that individual devices on a wafer could be biased during SEN irradia-
tion .21

’
22 The fixture, containing a probe card with the required num-

ber of probes , was rigidly mounted in the SEN chamber and aligned so
that the region to be probed was centered on the electron optic axis.
Figure 9 is a schematic illustration of this arrangement. The wafer is
fixed in a specimen holder on the moveable stage of the SEM, and in
operation , the chip to be investigated is adjusted relative to the
probes and the wafer raised in the Z—direction until the probes mate
with the pads. A system such as this would permit pre— and post—
radiation electrical characterization and irradiation under bias of se-
lected chips at the wafer level.

Another concern during wafer level irradiations is the possible
damage to devices adjacent to the target device due to scattering of the
electron beam in the target device or due to stray radiation in the SEM
chamber. Using Monte Carlo techniques to examine the problem of scatter-
ing in the target device , Chadsey has shown that this effect is negligi-
ble in neighboring devices.20 The magnitude of stray radiation in the
SEN chamber is more difficult to predict. This background is due to
electrons backseattered from the sample rescattering from the pole-piece
and walls of the sample chamber. Measurements by Lipman et al.~

2 indi-
cated no effect on the gain of neighboring devices when the target de-
vice received a dose of approximately 1 Mrad(Si02). However, ~fa et
al.10 in experiments on MOS capacitors observed an effect where the dose
due to stray radiation can be estimated to be 10 ~ to l0~~ times the
iiose in the target device.

In order to most closely simulate a 60 Co exposure with an SEM elec-
tron beam , the electron beam energy should be selected such that the
energy dissipated per unit mass thickness (dE/dx) across the critical ox-
ide is nearly constant. Exposure to 60 Co gamma—rays results in almost
uniform energy deposition throughout a typical device. This is not the
case for a low energy electron beam. Consider , for example , a critical

16
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oxide located between 200 and 250 jig/cm 2 In figure 2. A 5—key beani w i J i
deposit no energy in this oxide layer . A l0—keV beam or a 20—key beam
could deposit the same amount of energy in this oxide layer if the ind i-
vidual times of exposure and beam currents were appropriately adjusted.
However , the 20—keV beam deposits its energy more uniformly throughout
the oxide. For this reason , a beam energy of 20 keV would be the better
cho ice for  simula ting a 60Co exposure for this particular device config-
uration .

Substantial differences in dose rate can exist between an SEN ex-
posure and a 60 Co exposure delivering the same total dose to a device.
Dose rate can be calculated from eq (12) using the raster scan time and
the raster area or, equivalently , using the area of the beam spot and
the time the beam spends on each spot if the electron exposure is uni-
form . A typical MOS gate oxide might be 100 am thick under 1 jim of alu-
minum covered by 1 pm of glass. For a beam energy of 30 keV , a beam cur-
ren t of 100 pA , a raster area of 0.1 cm 2 (a chip of approximately 125
mils by 125 mils), and ras ter scan time of 1 s , the dose rate is 2.7 x
l0~ rad(Si02)/s. The beam current in the SEN may be varied conveniently
f rom 1 pA to 10 mA , thereby varying the dose rate in a range of approxi-
mately 10 to 10b rad(Si02)/s. The lower limit is set by the reliability
of the current—measuring electronics , assuming an image is not required
dur ing irradiation . The upper limit is set by the apertures of the SEN
optics; beam currents of 10 pA or greater are obtainable if these aper-
tures are removed (resolution will be lost). For comparison , typical
dose rates for 60 Co exposures are 20 to 200 rad(Si02)/s.

Some dose rate effects have been reported for very high dose
rates.23 At the lower limits of SEN beam current the dose rate is corn—
parable with 60Co sources so those effects are clearly not a problem .
In general, a consideration of the physics of device response would m di-
cate that rate effects should not be significant at l0~ to iü~ rad/s.
Above this rate, space charge e f fec t s  may be important. Thus , radiation
testing in the SEN offers the potential advantage of depositing signif I-
cant doses in only a few minutes .

SEN radiation testing has been shown to yield results similar to
60Co exposure for both bipolar 12 and MOS devices. 13 This techn ique has
a unique feature in that the radiation sensitivity of d i ff e ren t reg ions
of an integrated circui t can be separately investigated.15 When planning
a program which is to include SEN radiation testing , reasonable simula-
tion of 60Co total dose exposure can be obtained if the various facets
of SEM low energy electron irradiation are accounted for.
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Appendix A

Analysis of the Fraction of Energy Backscattered

In order to utilize the energy deposited versus penetration results
of Everhart and Hoff [Al] to calculate the energy deposited in aluminum ,
silicon dioxide, and silicon structures by a low energy electron beam ,
knowledge of the fraction of incident energy backseattered from the spec-
imen (f8) is necessary . This fraction is usually taken to be 0.1 from
the work of Bishop [A21 at 30 keV. A study was undertaken to examine
the validity of using this value at lower electron beam energies.

The fraction fg depends on n, the fraction of incident electrons
backscattered , and the fractional mean energy of the backscattered elec-
trons :

= n
where EBck is the mean energy of backscattered electrons and EB is the
beam energy . Both EBck/EB and r~ depend on the incident energy , speci-
men composition , the incident beam angle, and the scattering angle at
which they are measured. The data reviewed here are for normal inci-
dence and are integrated over all possible scattering angles.

There have been several experimental determinations of ri using a
variety of experimental techniques fA3—A7] . In the energy range of in-
terest here (usually EB < 30 key), the fraction of electrons backscat—
tered from aluminum or silicon is almost independent of the bean energy ,
EB, as shown in figure Al. Data on the fractional mean energy of back—
scattered electrons are scarce [A2 ,A8,A9]. Figure A2 illustrates the
variation of EBCk/EB with beam energy for electrons backscattered f~om
aluminum. The values given by Thomas [A8] were measured at 138 deg with
respect to the beam direction; the average value over all backscattering
angles would be greater . The values_of 

~B 
for an aluminum specimen an

be calculated using these values of EBCk/EB and values of rj from figure
Aib interpolated when necessary to obtain values at the same energies.
The results , with error bars estimated on the basis of scatter in the
reported data, are shown in figure A3 . It is apparent that taking the
value of f8 to be 0.1 in the range 5 to 30 keV makes no more than a 2—
percent contribution to the error in calculating the energy deposited.
This contribution is small in comparison to the other possible sources
of error. To a first approximation for silicon specimens , values of fg
can be taken to be the same as aluminum. The results are also expected
to be applicable in general to devices consisting of silicon , silicon
dioxide , and aluminum.
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Appendix B

Draft of Recommended Practice

This appendix gives a method of estimating the total absorbed dose
in semiconductor devices due to SEM electron irradiation in a form suit-
able as a first draft for presentation to Subcommittee F—l .ll on Quality
and Hardness Assurance of ASTM Committee F—l on Electronics.

Recommended Practice for Estimating the Total
Absorbed Dose in Semiconductor Devices from SEM Electron Irradiation 1

1. Scope

1.1 This recommended practice covers a method for calculating an
estimation of the total absorbed dose in critical semiconduc-
tor device oxides resulting from exposure to the low energy
electron beam available in a scanning electron microscope
(SEM). The calculation is based on the experimental work on
energy dissipation versus electron penetration depth of Ever-
hart and Hoff (l).2

1.2 The calculation requires knowledge of the geometry and composi-
tion of the device structure and the parameters associated with
the scanning electron microscope exposure: the electron beam
energy , the electron beam current, the duration of the expo-
sure, and the area scanned by the electron beam.

1.3 This method is limited to devices fabricated from materials
with atomic numbers between 10 and 15. Thus, it is applicable
to devices consisting of silicon, silicon oxides , silicon ni—
trides, and aluminum.

1.4 The experimental measurements of Everhart and Hoff were lim-
ited to electron energies between 5 and 25 keV . An extrapola-
tion of these results to 40 key is expected to incur only a
small error.

1.5 This method assumes that the scanning electron microscope is
adjusted so that the electron fluence incident on the device
is uniform , that the electron beam is incident normally on the
device , and that 10% of the incident energy is backscattered
from the surface of the device (2).

‘Reserved for ASTh jurisdictional footnote.
• 2The bold face numbers in parentheses refer to the list of references

appended to this practice.
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2. Significance

2.1. Knowledge of the effects of a total ionizing dose on the elec-
trical characteristics of a semiconductor device is a require-
ment for many applications. Total absorbed dose testing is
typically accomplished using 60Co irradiation; however, it is
often more convenient to simulate the exposure of a device to
60 Co gamma rays with an SEN than to use a 60 Co source .

2.2 The variation of dose with depth through the device for the
SEN electron beam is dependent on the device structure and the
beam energy ; this variation may be quite different from the es-
sentially constant depth—dose distribution for 60Co exposure.

2.3 This practice takes account of the variations in depth—dose
profiles of low energy electrons in device structures in the
calculation of the total absorbed dose in critical device ox-
ides.

3. Calculation

3.1 Calculate the number 

:
~~

i

~~~~~~

t electrons per unit area

qA5

where:

N electron fluence , electrons/cm2

‘B = electron beam current , A ,

t exposure t ime, s,
A — area scanned , cm2 , and

q = 1.6 x l0~~~ C/electron.

3.2 Determine the projected range of the incident electrons

RG — 3.98 EB
’ 7 5

where :
RG — electron projected range , ~.ig/cm 2 , and

EB — electron beam energy , key .

3.3 Using knowledge of the device structure, determine x1, the di s-
tance from the device surface to the top of the oxide of inter-
est, and x2, the distance to the bottom of the oxide both in
micrograms per square centimeter.
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x~ —

X2 = x 1 + p d

where :

= density of layer J above oxide, ~ig/cm
3,

= thickness of layer j above oxide, cm,

p = density of oxide layer , ug/cm 3, and

d = thickness of oxide layer , cm.

3.4 Calculate y~ and Y2

Xj  X2
y~ = 

~~~~

-, Y2
G C

3.5 If x2 > RG, Y2 = 1.0. The electron beam is not penetrating
the oxide layer. The results may be anomalous. Reconsider
beam energy being used.

3.6 If x2 > RQ, the dose in the oxide layer equals zero; stop the
calculation.

3.7 If x1 < RG, continue with the calculation.

3.8 Calculate the fraction of incident electron energy deposited
between yi and y2

= Y(y2) — Y(y1)

where:

— fraction of incident energy deposited and

Y(y) = 0.6 y + 3.l05y2 — 4.l33y3 + l.425y4

3.9 Calculate the energy deposited in the oxide layer per incident
electron

ED 
— 0.9 EBfD

where:

ED — energy deposited per electron , keV/electron .

3.10 Calculate the total absorbed dose in the oxide

D[rad(Si02) ]  = 1.602 x l0~~ N~
ED~

(x 2 —
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